海归网首页   海归宣言   导航   博客   广告位价格  
海归论坛首页 会员列表 
收 藏 夹 
论坛帮助 
登录 | 登录并检查站内短信 | 个人设置 论坛首页 |  排行榜  |  在线私聊 |  专题 | 版规 | 搜索  | RSS  | 注册 | 活动日历
主题: [原创]亚里斯多德之谜,亚里斯多德声称找到了一种四面体可以填充空间,可是没找到.2400年后俺找到了
回复主题   printer-friendly view    海归论坛首页 -> 海归商务           焦点讨论 | 精华区 | 嘉宾沙龙 | 白领丽人沙龙
  阅读上一个主题 :: 阅读下一个主题
作者 [原创]亚里斯多德之谜,亚里斯多德声称找到了一种四面体可以填充空间,可是没找到.2400年后俺找到了   
所跟贴 谢谢质疑, 2维称为镶嵌,三维称为填充,这样理解可以吗?纽约时报今年1月也提到了这个困扰 -- 秀才 - (561 Byte) 2010-4-28 周三, 01:29 (852 reads)
秀才
[博客]
[个人文集]




头衔: 海归少将

头衔: 海归少将
声望: 博导
性别: 性别:男
加入时间: 2005/06/16
文章: 8355
来自: 日本/上海
海归分: 232964





文章标题: 转贴纽约时报Packing Tetrahedrons, and Closing In on a Perfect Fit (830 reads)      时间: 2010-4-28 周三, 01:36   

作者:秀才海归商务 发贴, 来自【海归网】 http://www.haiguinet.com

https://www.nytimes.com/2010/01/05/science/05tetr.html?hp&ex=&ei=&partner=







Welcome to TimesPeople
Get Started TimesPeople recommended: We Have Met the Enemy and He Is PowerPoint 1:30 am
The latest activity in your network...
Latest activity in your network

RecommendSkip to article Try Times Reader 2.0Log InRegister Now
TimesPeople
Home PageToday's PaperVideoMost PopularTimes TopicsSearch All NYTimes.com

Science World U.S. N.Y. / Region Business Technology Science Health Sports Opinion Arts Style Travel Jobs Real Estate Autos Environment Space & Cosmos Advertise on NYTimes.com..Packing Tetrahedrons, and Closing In on a Perfect Fit Sign in to Recommend
Twitter
Sign In to E-Mail

Print

Reprints
Share
Close
LinkedinDiggFacebookMixxMySpaceYahoo! BuzzPermalink By KENNETH CHANG
Published: January 4, 2010
More than 2,300 years ago, Aristotle was wrong.

Skip to next paragraph

Glotzer Laboratory/University of Michigan
PUZZLING Researchers have been using Dungeons & Dragons dice to learn how to pack tetrahedrons. The record density recently hit 85.63 percent.

RSS Feed
Get Science News From The New York Times »
Now, in the past year, a flurry of academic activity is suddenly zooming in on an answer to a problem akin to wondering how many people can fit into a Volkswagen Beetle or a phone booth. Except here mathematicians have been thinking not about the packing of people, but of geometric solids known as tetrahedrons.

“It’s pretty remarkable how many papers have been written on this in the past year,” said Henry Cohn, a mathematician at Microsoft Research New England.

A tetrahedron is a simple construct — four sides, each a triangle. For the packing problem, researchers are looking at so-called regular tetrahedrons, where each side is an identical equilateral triangle. Players of Dungeons & Dragons recognize the triangular pyramid shape as that of some dice used in the game.

Aristotle mistakenly thought that identical regular tetrahedrons packed together perfectly, as identical cubes do, leaving no gaps in between and filling 100 percent of the available space. They do not, and 1,800 years passed before someone pointed out that he was wrong. Even after that, the packing of tetrahedrons garnered little interest. More centuries passed.

A similar conundrum for how to best pack identical spheres has a more storied history. There, the answer was obvious. They should be stacked like oranges at a supermarket (with a packing density of 74 percent), and that is what Johannes Kepler conjectured in 1611. But proving the obvious took almost four centuries until Thomas C. Hales, a mathematician at the University of Pittsburgh, succeeded in 1998 with the help of a computer.

With tetrahedrons, the best packing arrangement is not obvious, and after it was pointed out that tetrahedrons did not pack perfectly, it seemed that they did not pack very well at all. In 2006, two Princeton University researchers, Salvatore Torquato, a chemist, and John H. Conway, a mathematician, reported that the best packing they could find filled less than 72 percent of the space — packing more loosely than spheres. That ran counter to a mathematical conjecture that, among so-called convex objects (those without dimples, holes or hollows), spheres should have the loosest ideal packing.

The Princeton paper prompted Paul M. Chaikin, a professor of physics at New York University, to buy tetrahedral dice by the hundreds and have a high school student stuff them into fish bowls and other containers. “We immediately found you could do better than 72 percent,” said Dr. Chaikin, who had earlier worked with Dr. Torquato on the packing of squashed spheres, or ellipsoids. (It turned out that squashed spheres pack more densely than spheres.)

The Princeton paper also led Jeffrey C. Lagarias, a mathematics professor at the University of Michigan, to ask Elizabeth Chen, one of his graduate students, to look at tetrahedron packing. Ms. Chen recalled his telling her: “You’ve got to beat them. If you can beat them, it’ll be very good for you.”

Ms. Chen examined several hundred arrangements over the next few weeks, and, she said, “there happened to be several that stood out as very dense.” Her best packing easily eclipsed what Dr. Conway and Dr. Torquato had found, with a packing density of almost 78 percent, surpassing spheres.

“In fact, my adviser totally did not believe me,” Ms. Chen recalled.

After making physical models of tetrahedrons and demonstrating the packing patterns, she convinced Dr. Lagarias that her packings were as dense as she had said they were, and finally published her findings a year ago.

Meanwhile, Sharon C. Glotzer, a professor of chemical engineering also at the University of Michigan, was interested to see whether the tetrahedrons might line up as liquid crystals do. “We got into it, because we are trying to design new materials for the Air Force that have interesting optical properties,” she said.

Dr. Glotzer and her colleagues wrote a computer program that simulated the jostling of tetrahedrons and how they arranged themselves when pushed together. They found not liquid crystals but complex quasicrystal structures with patterns almost repeated yet not quite. “That is the most astonishing crazy thing,” Dr. Glotzer said.

Examining the quasicrystals, they did find a periodic structure that represented another leap in packing density: over 85 percent. Just as that finding was prepared for publication last month in the journal Nature, a group at Cornell, using a different search method, found yet another packing that was just as dense.

But while Dr. Glotzer’s structure was surprisingly complex — the repeat pattern consists of 82 tetrahedrons — the Cornell crystal was surprisingly simple, with just four. It is also puzzling to researchers why the tetrahedrons in Dr. Glotzer’s simulations tend to the complex quasicrystal structures if the best packing is actually a much simpler structure.

“That’s part of what’s so surprising about this,” said Dr. Cohn, of Microsoft Research. “Each of these packings feels very different.”

A few days before Christmas, Dr. Torquato and Yang Jiao, a graduate student, reported that they had tweaked the Cornell structure to bump up the packing density by a fraction, to 85.55 percent.

“I’d be shocked if what we have right now is the densest,” Dr. Torquato said in an interview last week. “It just happens to be the densest known right now.”

Dr. Torquato need not be shocked.

On Monday, Ms. Chen, the University of Michigan graduate student, posted a new preprint, which describes a family of packings that include the latest Cornell and Princeton structures. But it also includes a better packing. The calculation was verified by simulations from Dr. Glotzer’s group.

The new world record for packing density of tetrahedrons: 85.63 percent.

作者:秀才海归商务 发贴, 来自【海归网】 http://www.haiguinet.com









相关主题
[提上来]为什莫说米国Ivy League毕业华尔街顶级投行工作,声称找不... 海归酒吧 2007-10-07 周日, 00:10
[原创]2009 - 怀念安德鲁·怀斯 海天文学 2009-12-26 周六, 13:27
[原创] 道琼斯指数:2012年11月19日--23日一周量化预测数据-... 海归商务 2012-11-20 周二, 03:59
[原创]猎头代招 德资五百强医药企业(Bayer) O&I busnies... 生化制药 2012-5-29 周二, 11:22
[原创]猎头代招 德资五百强医药企业 marketing service ... 生化制药 2012-5-29 周二, 11:13
[原创]猎头代招 德资世界五百强企业服装行业 买手经理(内衣) 海归招聘 2012-3-19 周一, 15:22
[原创]猎头代招 德资世界五百强企业服装行业BD analyst proj... 海归招聘 2011-12-28 周三, 12:03
[原创] 道琼斯指数的确定性----美股,未来几年的好时光! 海归商务 2011-11-30 周三, 23:39

返回顶端
阅读会员资料 秀才离线  发送站内短信 浏览发表者的主页 QQ号码815522235 雅虎讯息通 MSN
显示文章:     
回复主题   printer-friendly view    海归论坛首页 -> 海归商务           焦点讨论 | 精华区 | 嘉宾沙龙 | 白领丽人沙龙 所有的时间均为 北京时间


 
论坛转跳:   
不能在本论坛发表新主题, 不能回复主题, 不能编辑自己的文章, 不能删除自己的文章, 不能发表投票, 您 不可以 发表活动帖子在本论坛, 不能添加附件不能下载文件, 
   热门标签 更多...
   论坛精华荟萃 更多...
   博客热门文章 更多...


海归网二次开发,based on phpbb
Copyright © 2005-2024 Haiguinet.com. All rights reserved.